Актуальная реальность: «29 мая 2020 в Норильске из резервуара хранения ТЭЦ-3, принадлежащей ПАО ГМК «Норильский никель» произошла утечка 21 160 тонн дизельного топлива. Об аварии – экологической катастрофе стало известно только через несколько дней. Опять заявили об очередной «системной» проблеме, но забыли как злорадно и системно уничтожали СССР и все уникальные достижения Отечественной науки самой передовой в мире. В результате „PERESTROIKI“ враги СССР системно уничтожили разработанные Отечественными учёными ГОСТы, СНиПы, инструкции и руководства по проектированию, контролю качества, техническому надзору за сооружениями, то есть уничтожили всю систему КОНТРОЛЯ КАЧЕСТВА созданную учёными СССР, результат – экологическая катастрофа в Норильске, но впереди очередные катастрофы на построенных 40-60 лет назад ГРЭС, ТЭЦ, АЭС, в связи с отсутствием постоянного технического надзора который раньше осуществляли учёные и специалисты  СССР.  

Ключевые слова:  строительство и наука, отечественные учёные, уникальные достижения, нововведения, экономическая прибыль, проблемы экологии.                                                                                                                           

     Цитата из доклада: «Веру в будущее мы найдём в величии нашего прошлого» – так нас учили в ХХ веке.   

Научные и технические кадры собранные в начале 1950-х годов в Научно-Производственном Объединении (НПО) ВНИПИ ТЕПЛОПРОЕКТ Минмонтажспецстроя СССР создавали и внедряли новые строительные материалы, технологии, процессы, конструкции и сооружения для всех министерств и ведомств Советского Союза, и так-же применялись во многих странах всего остального Мира.

Рисунок 1.    Штаб Науки СССР, единомышленники (справа налево) : к.т.н.И.А.Шишков директор института ВНИПИ Теплопроект ММСС СССР, д.т.н.И.Б.Заседателев зав. лабораторией теплотехнических исследований, к.т.н.Б.Д.Тринкер зав. лабораторией высотных и специальных сооружений, к.т.н.И.И.Шахов зав. лабораторией жаростойких конструкций.

ВНИПИ Теплопроект организованный в конце 1940-х годов на базе заводов, строительно-монтажных управлений и институтов являлся, как сегодня называют «кластер» (то есть Научно-Производственное Объединение НПО) который одновременно разрабатывал-исследовал-проектировал-изготавливал (свой завод в Апрелевке был!) и составлял инструкции по применению новых строительных материалов и технологий  ЖБИ, в результате время от первоначальной идеи до опытного образца было сокращено до минимума, экономились трудозатраты и сырьё, взаимозаменяемость учёных в цехах заводов позволяла получать высокачественные материалы и технологии по своим параметрам не имеющие аналогов в мире. 

Причём разработанные и утверждённые Инструкции по применению новых строительных материалов и технологий бетонов являлись гарантией долговечности зданий и сооружений. Директор ВНИПИ ТЕПЛОРОЕКТ к.т.н. Иван Алексеевич Шишков и заведующие центральными лабораториями составляли Главный Штаб Науки Минмонтажспецстроя и всего СССР  (Рис. 1).                                                        

ВНИПИ Теплопроект располагался в уютном подмосковном строительном городке Апрелевка (Рис. 2 – Рис. 4), состоявшем из лабораторных, инженерных корпусов, и опытного завода, который изготавливал отдельные партии инновационных экспериментальных конструкций, а в конференц-зале проводили семинары, совещания и мастер-классы   для всех строителей СССР и частых иностранных делегаций.

Рисунок 2.   ВНИПИ Теплопроект Минмонтажспецстроя СССР, научная часть института.
Рисунок 3.  Инженерный корпус Теплопроекта.
Рисунок 4.  Опытный завод Теплопроекта.

Основная тематика Центральной лаборатории высотных и специальных конструкций и сооружений, которой заведовал с 1954 года к.т.н. Б.Д.Тринкер, включала обследование (Рис. 5) и изучение состояния высотных железобетонных дымовых и вентиляционных труб, градирен, шахт, сборных ЖБИ конструкций для промышленного и жилищного строительства, разра­ботку новых проектных решений.

Рисунок 5.   Организация постоянного контроля качества инженерных сооружений, зав.лабораторией № 10 на своей привычной научно-производственной Высоте, к.т.н.Б.Д.Тринкер, 1961 год.

Проводились исследования, направленные на создание специальных бетонов высокой морозостойкости для башенных гипер­болических градирен и особоплотных бетонов, твердеющих в условиях непосредственного соприкосновения с породой, замороженной до −50°С, также для бетонирования закрепного пространства калийных шахт. Проводились исследования и были разработаны основные положения теории коррозии бетона под воздействием сернистого газа.  Разрабатывались способы противокоррозионной защиты и ремонта бетона стволов труб и башенных градирен, цементно-полимерные бетоны повышенной коррозионной стойкости. Большое место в исследованиях занимали вопросы управления структурой и свой­ствами бетонов путём применения поверхностно-активных веществ ПАВ и электролитов, не вызывающих коррозию арматуры, в том числе бетонов, предназначенных для возведения труб и других сооружений в скользящей опалубке.  По договорам проведено обследование более 500 железобетонных высотных труб и даны рекомендации по их ремонту или восстановлению. 

В результате проведённых работ были разработаны общесоюзные и ведомственные нормативные документы по производству бетонных работ при возведении дымовых железобетонных труб, башенных гиперболических градирен, калийных шахт, тяжёлых морских причалов, по противокоррозионной защите специальных сооружений в высоко-агрессивных средах, обеспечению жаростойкости, сейсмоустойчивости и других параметров. Разработаны нормативные документы по приготовлению и применению торкрет-масс для тепловой изоляции, а также огнезащитных штукатурок и жаростойких растворов.  

Серьёзной работой являлось обобщение результатов исследовательских работ и опыта строительства железобетонной опоры (высотой 385,6 м) телевизионной башни в Останкино (1963-1967). При строительстве этого уникального сооружения были предъявлены специальные требования к качеству цемента и заполнителей бетона. Лабораторией № 10 проводился жёсткий постадийный активный контроль за соблюдение всех технических требований при возведении башни. 

Были получены новые данные о влиянии: вещественного состава цемента (щелочей, окиси железа) и структуры минералов (алита и белита) на свойства бетонных смесей и затвердевшего бетона, Водо-Цементного отношения В/Ц на прочность и долговечность бетона. Прочность бетона Останкинской телебашни со временем нарастала непрерывно, при проектной марке бетона М400 (1963 год), через 10 лет испытания бетона на прочность на отметке 85 метров показали результат М650-М700 и Мрз800, в результате Б.Д.Тринкер получил  Вечный Бетон (Рис. 6).

В ХХ веке построено более 80 труб высотой 320 – 330 метров новых конструкций с противодавлением в вентилируемом зазоре между стволом и футеровкой, разработанных лаб. №5, №10 и отделом проектирования промышленных труб института. На Углегорской, Запорожской, Рязанской ГРЭС в 1970-1974 построены дымовые трубы высотой 320 метров новой конструкции. Исследование, проектирование и подбор составов бетона для всех дымовых труб были произведены в лаборатории №10.

Рисунок 6. ВЕЧНЫЙ  Бетон Останкинской башни, 1963 год.

С применением полимерцементного лёгкого бетона ПЦБ впервые построена дымовая труба №2 высотой 330 метров на Экибастузской ГРЭС-1 в 1981 и самая высокая в Мире труба высотой 420 метров на Экибастузской ГРЭС-2 в 1985.   Серию дымовых труб высотой 330 метров с кремне-бетонными стволами при авторском надзоре лаб. №10, было осуществлено на Киришской ГРЭС, Зуевской ГРЭС-2, Ново-Ангренской ГРЭС, труба №1 на Экибастузской ГРЭС-1, на Азербайджанской ГРЭС в 1977-1983. 

Уникальные трубы новой конструкции с полимер-силикатным ПСБ внутренним стволом, для эксплуатации в сверх-высокой агрессивной среде были построены на Сибирских ГРЭС. По инструктивным документам, разработанным лаб. №№ 5 и 10, были построены стволы Березниковского, Соликамского и Селигерского калийных комбинатов и тяжёлый морской причал в Баренцевом море.

При научно-технической помощи лаб. № 10 построены первые в СССР конические железобетонные дымовые трубы высотой 180 и 250 метров  в скользящей опалубке на ТЭЦ-25, ТЭЦ-26, ТЭЦ-23, и гиперболи­ческие градирни (гипар) высотой 90 метров впервые в СССР в скользящей опалубке с применением супер-ЛТМ и бетононасосов = на Московских ТЭЦ-21, −22, −23, −24, −25, −26, на Ленинградских ТЭЦ, Киевской ТЭЦ-6, Гомельской ТЭЦ впервые в СССР.  В новой слоисто-пластиковой опалубке, с суперпластификаторами ЛТМ и с бетононасосами, на Ровенской АЭС и Ново-Ангренской ГРЭС возведены впервые в Европе уникальные самые мощные в мире градирни высотой и диаметром по 150 метров (гиперболические параболлоиды).

Все высотные сооружения возведены из бетона с суперпластификатором ЛТМ полученным в лаб.№10 (первое в мире ПАВ-лигносульфонаты – ССБ Сульфитно-Спиртовая Барда, создано в 1948 году Б.Д.Тринкером), чтобы применить литьевую-безвибрационную самоуплотняющуюся технологию (О.К.= 22-24 см), одновременно получить сверх-прочный и сверх-долговечный бетон в высокоагрессивных средах, и одновременно улучшить экологию страны. 

В лаб. №10 запроектирован и подобран бетон для возведения памятника В.И.Ленину в г. Волгограде (Сталинграде), разработаны методы реставрации и под руководством руководителя лаборатории осу­ществлена работа на главном монументе «Родина-мать» памят­ника-ансамбля героям Сталинградской битвы на Мамаевом кургане в г. Сталинграде в 1969-1971, и на 3000-кубовых фундаментах цехов метанола на Новгородском химкомбинате «СОЮЗАЗОТ», которые испытывали пульсирующие под давлением 200 атмосфер нагрузки, в 1982-1983 годах.

Рисунок 7. Специальный сверх-высотный монтаж невозможен без применения разработанной отечественными учёными-новаторами уникальной «Единой системы строительства», самые высотные в мире градирни на Ровенской АЭС, высота 150 метров, 1980 год.

За время работы в институте Теплопроект сотрудники лабо­ратории №10 получили более 100 авторских свидетельств на изобретения, защитили десять кандидатских диссертаций, опубликовали более 450 статей и три книги по профилю специальных и высотных работ. 

Наглядные примеры показывают значительную экономическую прибыль полученную в результате производственного применения научно-технических разработок Теплопроекта, например при возведении впервые в Мире в 1984 году дымовой трубы высотой 250 метров ТЭЦ Металлургического Комбината «Азовсталь» в гор. Жданов (Мариуполь) из кислото-жаро-стойкого лёгкого (!) всепогодного полимер-силикатного бетона ПСБ. При расходе бетона 10 тысяч кубометров был получен чистый эффект - прибыль в количестве 1 миллион рублей (в ценах 1984 года) за счёт:

  • Сокращённой по-времени новой технологии, то есть одновременного совмещённого монтажа-бетонирования наружного и внутреннего стволов трубы.
  • Применения кислото-жаро-стойкого лёгкого полимерсиликатбетона ПСБ, эксплуатация которого с 1984 года показала высочайшую гарантированную долговечность и стойкость.
  • Отсутствия затрат на ремонт и восстановление.
  • Отсутствия затрат на сохранение экологии окружающей среды.
  • Поликлиматических возможностей возведения.

         Впервые в истории мирового строительства были получены лёгкие всепогодные бетоны на керамзитовом гравии (лёгкий бетон!) имеющие высокие теплозащитные свойства и одновременно обладающие кислото- и щелоче-стойкостью, а также как показал четвертьвековой опыт эксплуатации высокую долговечную термостойкость до 600 градусов Цельсия. Появилась возможность во-первых круглогодично строить тепловые и атомные электро-станции, химические предприятия в зимних условиях при температуре минус 50 градусов Цельсия на Вечной Мерзлоте (Сургутские и Берёзовская ГРЭС высоко-качественно возведённые на Вечной Мерзлоте из High Performance Concrete), во-вторых обеспечить надёжную долговечную теплоизоляцию зданий для Крайнего Севера и Дальнего Востока СССР.

Рисунок 8.   Результаты работы : вручение высшей награды Красного Знамени Теплопроекту заместителем Министра Минмонтажспецстроя СССР, из книги В.П.Луговского к 100-летию Л.Д.Солоденникова (автор статьи А.Б.Тринкер), издание 2013.

 Учитывая запросы энергетиков и для расширения области применения были сконструированы для малых энергетических установок отдалённых районов Севера сборные мобильные железобетонные дымовые трубы высотой 30, 45, 60 метров, причём для эксплуатации в среде высоко-агрессивных дымовых газов (топливом служит сернистый мазут, с содержанием серы 3-5 %) применяется лёгкий (!) полимер-силикат бетон ПСБ, для средне-агрессивных дымовых газов (топливом служит бурый уголь, содержание серы 0,5-1 %) применяется лёгкий полимер-цементный бетон ПЦБ.

Технология применения и материалы-композиты были разработаны Центральной лабораторией высотных и специальных сооружений и конструкций № 10 ВНИПИ Теплопроект ММСС СССР.

Сборные мобильные дымовые трубы высотой 30, 45 и 60 метров из ПСБ, предназначенные для отдалённых районов, быстро-монтируемые в любых климатических условиях при температуре от минус 60 до плюс 60 градусов Цельсия и на Вечной Мерзлоте стали этапом научно-технического прогресса нашей страны.

Авторский коллектив Теплопроект за разработку и внедрение сборных дымовых труб был наконец-то (успели признать заслуги!) награждён в 1991 году последней премией Совета Министров СССР.

К настоящему времени в эксплуатации находится более 50 дымовых труб ПЦБ (в том числе: самая высокая в Мире 420-метровая на Экибастузской ГРЭС №2, построенная в 1986, дымовая труба №2 на Экибастузской ГРЭС №1 высотой 330 м, построенная в 1980, дымовая труба высотой 370 м Берёзовской ГРЭС построенная в 1985, и другие высотки) и 10 дымовых труб из лёгкого ПСБ (в том числе высотой 330 метров на Омской ТЭЦ № 5).

Для возведения одной дымовой трубы высотой от 250 до 420 метров расходуется от 10 до 20 тысяч кубометров бетона, нетрудно подсчитать общий объём: ПЦБ – приблизительно 600 000 м3, и ПСБ – 120 000 м3 за период с 1984 года по настоящее время. Кроме этого, были изготовлены десятки мобильных сборных труб ПЦБ высотой 30, 45, 60 метров для котельных и ТЭЦ в отдалённых районах Крайнего Севера, Сибири и Дальнего Востока, также ПЦБ и ПСБ применялись в цехах химических и металлургических комбинатов.

До сих пор данная технология вне конкуренции во всё Мире!

Перечислим разработки Центральной лаборатории № 10 ВНИПИ Теплопроект, которые успешно применялись разными министерствами нашей страны и перспективные в ХХ1 веке:

1. Минэнерго СССР:

  • технология строительства монолитных железобетонных градирен высотой 55 метров в переставной опалубке – применение комплексных воздухо-вовлекающих поли-климатических химических добавок (ЛТМ) для повышения долговечности бетона эксплуатируемого в жёстких климатических условиях, 1960-е годы;
  • технология строительства монолитных железобетонных градирен высотой 90 метров в скользящей опалубке для Московских ТЭЦ 21, 22, 23, 25, 26 (главный производитель работ А.Б.Тринкер) с 1976 года, применение комплексных универсальных модификаторов – поверхностно-активных ПАВ и электролитов которые являются ингибиторами коррозии и повышают долговечность бетона;
  • технология строительства монолитных высокопроизводительных градирен высотой 150 метров (А.Б.Тринкер) для Ровенской АЭС (Украина) и Ново-Ангренской ГРЭС (Узбекистан);
  • технология единой системы возведения монолитных высотных сооружений круглогодичного строительства от плюс 55 до минус 60 градусов цельсия, включающей применение : скользящей опалубки, бетононасосов, суперпластификаторов ЛТМ , полимерных плёночных покрытий защищающих свежий бетон от высыхания,
  • технология применения термоактивных подвесных покрытий ТАПП для непрерывного зимнего бетонирования высотных сооружений, в содружестве с лабораторией № 5, заведующий лабораторией д.т.н.И.Б.Заседателев.

         Минэнерго СССР применял разработки лаб. №10 ВНИПИ Теплопроект при строительстве АЭС Козлодуй в Болгарии, ТЭЦ во Вьетнаме и в Улан-Баторе (Монголия), АЭС на Кубе, ГЭС «Хоабинь» во Вьетнаме.

2. Минхимпром СССР:

  • методика ремонта нагнетанием для 3000-кубометровых фундаментов под плунжерные насосы цеха метанола, развивающие циклические знакопеременные нагрузки (давление плунжерных насосов 200 ат), на химическом комбинате «Союзазот» в Новгороде, 1975-1980 годы;
  • технология поточного строительства и ремонта грануляционных башен высотой 180 метров нитроаммофоски NPK на химическом комбинате «Акрон» («Союзазот») в Новгороде (А.Б.Тринкер), 1980–1983 годы;
  • технология ПСБ и ПЦБ для получения химически стойких бетонов.

         Минхимпром СССР применял разработки ВНИПИ Теплопроект при строительстве химического комбината на Кубе.

3. Главмоспромстройматериалы Мосстройкомитета (А.Б.Тринкер):

Методика многофункциональных нано-суперпластификаторов ЛТМ для получения литьевой (безвибрационной) технологии самоуплотнения бетонной смеси, экономии цемента, повышения качества и долговечности бетона, одновременно утилизируются многотоннажные отходы производств химической и целлюлозно-бумажной промышленностей что улучшает экологию окружающей среды.

Практическое применение осуществлено на заводе ЖБИ № 17 при производстве сборных ж.б. свай длиной от 4 до 20 метров, дорожных плит, блоков, годовой объём внедрения составил 160 тысяч кубометров. В 1987 году коллектив завода и главка за внедрение ЛТМ награждён Премией Совета Министров СССР.

 КСМ-24  применение супера для всего выпуска изделий ЖБИ в объёме 180 тысяч м3 в год, на основе ЛТМ привозной с ЖБИ № 17.

4.  Главмосстрой Мосстройкомитета:
технология суперпластификатора ЛТМ на Московском ДСК № 1 (А.Б.Тринкер):

  • Краснопресненский завод ЖБК с 1987 года внедрил в полном объёме 600 тысяч м3 бетона в год по конвейерной технологии, изготовив наружные стеновые трёхслойные панели, кровельные панели, блоки, и 150 тысяч м3 в год товарного бетона - поли-климатический-супер ЛТМ.
  • Тушинский завод ЖБК с 1988 года внедрил в полном объёме по кассетной технологии 220 тысяч м3 в год изготовляя панели перекрытий.

5. 1-й Строительно-Монтажный трест Минсредмаш СССР (А.Б.Тринкер):
нано-технология многокомпонентного повышения качества сборных железобетонных изделий методом одновременного применения:

  • высокофункционального нано-суперпластификатора ЛТМ,
  • нано-смазки для металлических форм, изготавливаемых в роторно-пульсационном гомогенизирующем аппарате-ЛТМ и смазку, измельчая до размеров молекул, в результате Впервые в Москве в 1987 году была внедрена Универсальная Нано-Технология!

 Успешным итогом комплексного применения нанотехнологии то есть тончайшего измельчения компонетов смазки и суперпластификатора ЛТМ: во всех железобетонных изделиях завода ЖБИ Минсредмаша СССР в Лихоборах с 1987 года (70-летний юбилей страны) отсутствовали +раковины, каверны и трещины, одновременно получена значительная экономия цемента, электро-энергии и трудозатрат. 

Завод ЖБИ в Лихоборах изготавливал в трёх цехах по агрегатно-поточной технологии более 350 (!!!)  РАЗНЫХ видов изделий по номенклатуре, для: жилищного, промышленного и специального подземного строительства. 

Эффективные строительные материалы и технологии бетонов из отечественного сырья разработанные в НПО ВНИПИ Теплопроект Минмонтажспецстроя СССР в 1950-1980 годы это огромное практическое богатство-наследие для современных строителей России ХХ1 века.

Темы исследуемые в технологии строительных материалов и бетонов в настоящее время имеют изменённые названия, например «Высоко-функциональные бетоны» то есть как их объясняют – отвечающие специальным высоким требованиям, но ведь в сооружениях построенных в 1960-х годах требования были НЕ меньше; «поли-модификаторы» для бетонов – те же самые ПАВ, а «нано-модификаторы» получали перерабатывая материалы в РПА; «кластеры» – те же самые Научно-Производственные Центры созданные ещё в 1930-е годы в которых учёные и конструкторы работали вместе с инженерами и технологами заводских цехов создавая в комплексных бригадах в сокращённые сроки новые модели высоко-функциональной техники, в итоге, как яркий пример: в нашей стране появилась самая Первая в Мире космонавтика!

Необходимо учиться и самоотверженно работать в Комплексном Научно-Производственном Коллективе НПК объединённом одной задачей: все участники должны подчиняться дисциплине без исключений, все имеют право выражать своё мнение, активно проявлять творческую инициативу, непрерывно в поиске новых методик, материалов и технологий, а за находку и внедрение новых материалов и технологий новаторы должны материально поощряться в соответствии с полученной прибылью.

Всё так и было в СССР, причём заместитель министра Минмонтажспецстроя тов. Леонид Дмитриевич Солоденников постоянно помогал ВНИПИ Теплопроекту обеспечивая современным оборудованием и опытными кадрами.         

ВЫВОДЫ

ХХI веке появилось выражение : «СССР ничего не производил, кроме галош!» - однако это извращение настоящей реальности. Впервые во всемирной истории науки и техники в 1950-1980 годах во всесоюзном научно-исследовательском центре ВНИПИ Теплопроект Минмонтажспецстроя СССР учёные практически успешно доказали: железобетон является самым долговечным, всепогодным и сейсмостойким строительным материалом, из которого были созданы архитектурные шедевры, один из примеров Останкинская Чудо-Башня. В целях ПРЕДОТВРАЩЕНИЯ экологических катастроф в ХХI веке, наподобии аварии в Норильске, отечественная наука должна продолжить производственное творчество гениальных учёных Теплопроекта.

                                               Список литературы                                                        

1. Тринкер Б.Д.  Пластифицирующие добавки к бетону, Сборник статей по строительству, № 6 (9), 1950, Москва, Машстройиздат. 

2. Тринкер Б.Д.  Основные положения для выбора материалов и составов бетона для специальных высотных сооружений, «Специальные бетоны и сооружения», сборник трудов ВНИПИ Теплопроект ММСС СССР, 1976, Москва, стр. 3-14.

3. Тринкер Б.Д.  Вопросы проектирования и строительства монолитных дымовых труб, «Бетоны для специальных сооружений», сборник трудов ВНИПИ Теплопроект ММСС СССР, 1988, Москва, стр. 3-15.

4. Тринкер А.Б.  Единая система скоростного бетонирования высотных сооружений, журнал «Бетон и железобетон», №12, 1983, Москва, стр.20-21.

5. Тринкер Б.Д. и А.Б.Тринкер Надёжность и Долговечность высотных сооружений из монолитного железобетона, журнал «Монтажные и специальные работы в строительстве», № 11, 1992, стр. 19 – 22.

 Scientific Pantheon of the Fatherland

 Alexander Trinker, Dr.Sci.Tech.                                                       

Current reality: "May 29, 2020 in Norilsk, a leak of 21,160 tons of diesel fuel occurred from the ТЭЦ-3 storage tank owned by MMC Norilsk Nickel PJSC. About the accident - an environmental disaster became known only a few days later. They again declared another "systematics," but forgot how gloating and systemically destroyed the USSR and all the unique achievements of World Science the most advanced in the world.   As a result of "PERESTROIKA",          the enemies of the USSR systematically destroyed the GOST developed by the Domestic Scientists, SNiPs, instructions and manuals on design, quality control, technical supervision of structures, that is, they destroyed the entire QUALITY CONTROL system created by scientists of the USSR, the result is an environmental disaster in Norilsk, but the next disasters at the GRES built 40-60 years ago are ahead, CHPP, NPP, due to the lack of constant technical supervision, which was previously carried out by scientists and specialists of the USSR.

Keywords: construction and science, domestic scientists, unique achievements, innovations, economic profit, environmental problems.